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THE TEACHING OF MATHEMATICS 
EDITED BY MELVIN HENRIKSEN AND STAN WAGON 

A Euclidean Model for Euclidean Geometry 
ADOLF MADER 

Department of Mathematics, University of Hawaii, Honolulu, HI 96822 

I. Introduction. In courses on non-Eucidean geometry models of hyperbolic 
geometry play an important role. The standard models are Klein's disk model and 
the disk model and half-plane model named after Poincare [1], [4], [6], [7], [8]. In 
each case the model is embedded in the Eucidean plane and the concepts of 
hyperbolic geometry are interpreted in Euclidean terms. One wonders whether there 
is a similar model of Euclidean geometry within Euclidean geometry, and in 
particular a model that is bounded as a Euclidean object. Then for once one could 
see the whole Euclidean world that tends to run off the blackboard all too fast. A 
little reflection yields the correct answer: Of course! After all, all that is needed is a 
bijection of the standard Eucidean space with a bounded part of itself, and by 
means of this bijection the structure of Euchdean space can be transferred to the 
model. Doing this randomly will likely result in a model which is quite intractable 
without going back to the original. We will below propose a model that is 
reasonably simple in itself and has a transparent relationship with standard 
Euclidean space. It demonstrates the difference between the logical content of an 
axiom system and its interpretations; in particular it destroys the faith in a 
preordained single model of Euclidean space. It can serve as an introduction to the 
idea of models of a geometry, and thus make the models of unfamiliar geometries 
more palatable. It further constitutes a source of questions and exercises, and looks 
like a pedagogically convenient way to introduce the projective extension of 
Eucidean space. 

While there was never a doubt that this model must have appeared someplace 
before, I only discovered it in the textbook by David Gans [3] when I revised my 
article. Gans uses the model extensively for motivating and illustrating projective 
geometry. It is introduced on page 212 after the study of transformations of various 
kinds. However, the model can be used profitably from the start in any geometry 
course and deserves more publicity. I would like to thank the referee for a thorough 
review and many helpful suggestions. 

II. The Model F. Let F be the interior of a circle X of radius r in the standard 
Eucidean plane E. The straight lines in F are the half-ellipses of E whose major axes 
are diameters of o and the diameters themselves. It is convenient to include among 
the "half-ellipses" the diameters of o, which then coincide with their "major axes" 
and have degenerate (one-point) "minor axes." At this stage we may observe: 

(2.1) The families of parallel lines in F are the families of half-ellipses with 
common major axes. 

The angle measure between two straight lines of F is the E-measure of the angle 
between their major axes. The F-distance d between the center 0 of X and a point 
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of F with E-distance d from 0 is 

(2.2) d=rd/V r2-d2. 

The distance between any two points on a diameter is computed from their 
distances from 0, and the distance between two arbitrary points can be computed 
by transferring it to a diameter by means of a parallelogram. 

2.3 THEOREM. F is a model of the Euclidean plane. 

The validity of 2.3 is established by means of the following map. 

(2.4) The bijection a: E -* F. The plane E is contained in 3-dimensional Euclidean 
space and we choose Cartesian coordinates in the latter such that E is the x-y 
plane, X is the circle X2 + y2 = r2, and F is the interior of w. Let S be the 
hemisphere X2 + y2 + (z - r)2 = r2, z < r, with center C. For the initiated, a is 
simply the central or gnomonic projection from E onto S composed with the 
orthogonal projection of S onto X [1], [2]. Explicitly, given P E E, let P1 be the 
point of intersection of the line PC with S and let P = a(P) be the intersection 
with E of the parallel to the z-axis through P1. 

It is clear that this map a: E -4 F is a bijection. The model F is established by 
using a to transfer to it the structure of E. The image a(a) of a straight line a of E 
is obtained by intersecting the plane through a and C with S which results in a 
great semicircle a,. Projecting a, into F yields an ellipse whose principal axis is the 
projection of the diameter of a, in z = r (Fig. 1). It is now clear that angles in F are 
measured as described above. In terms of coordinates a is given as follows. 

C 

FIG. 1 

(2.5) Let P be a point of E and let P = a(P). If (p, T) are the polar coordinates 
of P and (p, ) the polar coordinates of P then 

ii=rp//r2+p2, m =, 

p=r-/r12 -i2 -9 
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If (x, y) are the Cartesian coordinates of P and (x-, y) the Cartesian coordinates of 
P then 

x = rx/\/r2 + x2 + y2, =y/r2 + X2 + y2 

X = rX/2 - -2 _y2, 
2 _ ry+r--2 - y2 

_ 2 2 
Proof. In Fig. 2, OP = p, OP = p and PP1 = r - - _2 from the equation of 

the sphere. Similar triangles yield 

p p- p 
r r- r2_ p2 

whence p = r #/ r2 - p2. The rest follows easily. 

C 

0 P P 

FIG. 2 

The formulae (2.5) together with the fact that F is a Eucidean geometry (being a 
carbon copy of E) show that the distance measures in F are obtained as claimed, 
and 2.3 is now proven. 

Another model of Eucidean geometry has appeared partway through the above 
proof. The central projection maps the Eucidean plane E bijectively onto the 
hemisphere 

H: x2 + y2 + (z-r)2 = r2, z < r, 

transforming straight lines into great semicircles. The model F may be viewed as a 
perspective picture of the hemispherical model H. 

Translating properties of F into the language of E yields facts and construction 
problems such as the following. 

(2.6) Given a circle w and two points in its interior, there exists a unique ellipse 
passing through the given points and having as major axis a diameter of W. Find a 
straightedge and compass construction of the major and minor axis of this ellipse. 

(2.7) Given a circle w, a diameter of w, and a point in the interior of W, there 
exists a unique ellipse having the given diameter as major axis and passing through 
the given point. Find a straightedge and compass construction of the minor axis of 
this ellipse. 

(2.8) Let A be an ellipse whose major and minor axes are given. Let a be a line 
passing through the center of A. Find a straightedge and compass construction of 
the points of intersection of a and A. 
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(2.9) Let A1 and A2 be concentric ellipses with known major and minor axes. If 
the major axes of A1 and A2 have equal lengths, find a straightedge and compass 
construction of the points of intersection of A1 and A2. 

These construction problems can be solved by mapping the F-lines back to E and 
thereby turning the ellipses into straight lines. Figure 3 indicates how P can be 
constructed from P = a(P) and conversely. 

0~~~~~ 

FIG. 3 

III. The Global Picture. It is now possible to illustrate Eucidean curves in their 
entirety in IF. FIGUREs 4-7 illustrate the kinds of graphs one gets in F. In each 
figure the radius of IF is 12 units. 

FIG. 4. Coordinate grid x = 2n, y = 2n, -10 < n < + 10. 
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FIG.5. Sine andcosinesy =2sinx,y= ?2(2n + cosx)y= ?4n,1 < n < 3 

FIG. 6. The Archimedean spiral p = 

As in the case of the models of hyperbolic geometry the model F is deceptive in 
suggesting a distinguished center of the Euclidean plane. This center is distinguished 
only from the point of view of the ambient space but indistinguishable from other 
points from within the model. 

The coordinate grid (FIG. 4) is readily recognized as the perspective picture of the 
corresponding family of great semicircles of the hemispherical model H. It is a bit 
more challenging to imagine the preimages on the hemisphere of the other figures. 
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FIG. 7. Conic sections. 

(x -4)2 y22 
E: Ellipse ( + - = 1, P: {Parabola y2 = 4x 

16 29 
(x + 4) y 3 

H: Hyperbola -=1 with asymptotes A: y = + -(x + 4) 
16 94 

IV. Projective Geometry. The ideal points that must be added to F in order to 
get the real projective plane P are there for all to see. They are the points of W, and 
X is the line at infinity. A family of parallels meets at the endpoints of their 
common principal axes, and at least at this stage we see that the two endpoints must 
be identified in order to preserve the incidence axioms. Having these ideal points 
available, Fig. 7 suggests that the distinguishing features of ellipses, parabolas, and 
hyperbolas are merely that they have none, one, or two points in common with the 
ideal line w. Asymptotic curves meet on X but the converse need not be true as we 
can see from the parabola. 

The projective closure of the hemispherical model H is the closed hemisphere 

x2 + y2 + (z-r)2 = r2 z < r, 

with antipodal points on the equator identified. In this setting an angle and distance 
measure can be defined conveniently [1], [6], [7] yielding a standard model of elliptic 
geometry. More models of various geometries can be found using the full sphere and 
utilizing stereographic projection [1], [5]. 

V. Extension to Higher Dimensions. There is no difficulty at all to extending the 

isomorphism (2.5) to arbitrary dimension n. If a,, a a denote direction 
angles, p, p- the distances from the origin, and xi, x-i the Cartesian coordinates of 
corresponding points P and P respectively then the transformation equations are: 

p =r ,rp ai=a; P = ' ai = ai (5.1) 

rx rx; (5.2) 
xi xi(5.2 
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The representative hyperplane xl = A is transformed into the half-ellipsoid 
(r2 + A2)x 2 + A2x2 + * +A2X 2= A2r2, xi -A > 0. 

VI. Philosophical Implications. We all know the murals in churches in which the 
deity is surrounded by angels and looking down onto earth from his seat on the 
clouds. It seems like a rather naive image now when every child knows that 
the immensity of space only begins beyond the clouds, and we expect to encounter 
strange creatures of somewhat human forms on space ventures rather than God and 
angels. However, slight corrections in the traditional pictures could create depictions 
which are mathematically perfectly consistent: simply enter the impenetrable shell 
of ideal points between the world and the heavens. Even in a Eucidean universe 
there is plenty of space for one or many worlds like ours anid still more for heaven 
and hell-it all depends on how you measure. 
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Orthogonal Bases of R3 with Integer Coordinates and Integer 
Lengths 

ANTHONY OSBORNE AND HANS LIEBECK 
Department of Mathematics, University of Keele, Staffordshire ST5 5BG, England 

An interesting problem that arises when studying orthogonal bases of R3 is to 
find such bases of vectors with integer coordinates and integer lengths. The basis 
{(2, 2, - 1), (2, - 1, 2), (-1,2,2)) and its relatives feature prominently in textbooks, 
but there is a shortage of other examples. In this note we give a complete solution of 
the problem. 

It clearly suffices to consider the primitive bases {u, v, w} of R3 where each 
vector u, v, w has integer length and the three coordinates of u, v, w are, in each case, 
relatively prime integers. The general solution of our problem is then obtained from 
the bases { au, bv, cw}, where a, b and c are arbitrary nonzero integers. 

A simple construction. The following simple construction provides a rich source 
of orthogonal bases of the type we want. Consider nonzero vectors in R3 with 
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